模板

模板积累

FAQ

  • 绝大部分的RE错误来源于数组开的过小
  • 注意整数除以整数的时候乘以1.0,除非要是用整除的含义(拓展欧几里得)
  • 使用并查集的时候最后要扫一遍,使路径压缩。
  • 时刻注意数字的范围,如果题目中出现了long long 一定要高度的重视,因为很有可能会被坑
  • 开比较大的栈:#pragma comment(linker, “/STACK:102400000,102400000”)

快速读入挂

有时候并不一定就很快emmm

1
2
3
4
5
6
7
8
9
10
11
12
ll readll(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int readint(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}

c++高精度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#include<string>
#include<iostream>
#include<iosfwd>
#include<cmath>
#include<cstring>
#include<stdlib.h>
#include<stdio.h>
#include<cstring>
#define MAX_L 2005 //最大长度,可以修改
using namespace std;
class bign
{
public:
int len, s[MAX_L];//数的长度,记录数组
//构造函数
bign();
bign(const char*);
bign(int);
bool sign;//符号 1正数 0负数
string toStr() const;//转化为字符串,主要是便于输出
friend istream& operator>>(istream &,bign &);//重载输入流
friend ostream& operator<<(ostream &,bign &);//重载输出流
//重载复制
bign operator=(const char*);
bign operator=(int);
bign operator=(const string);
//重载各种比较
bool operator>(const bign &) const;
bool operator>=(const bign &) const;
bool operator<(const bign &) const;
bool operator<=(const bign &) const;
bool operator==(const bign &) const;
bool operator!=(const bign &) const;
//重载四则运算
bign operator+(const bign &) const;
bign operator++();
bign operator++(int);
bign operator+=(const bign&);
bign operator-(const bign &) const;
bign operator--();
bign operator--(int);
bign operator-=(const bign&);
bign operator*(const bign &)const;
bign operator*(const int num)const;
bign operator*=(const bign&);
bign operator/(const bign&)const;
bign operator/=(const bign&);
//四则运算的衍生运算
bign operator%(const bign&)const;//取模(余数)
bign factorial()const;//阶乘
bign Sqrt()const;//整数开根(向下取整)
bign pow(const bign&)const;//次方
//一些乱乱的函数
void clean();
~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b
bign::bign()
{
memset(s, 0, sizeof(s));
len = 1;
sign = 1;
}
bign::bign(const char *num)
{
*this = num;
}
bign::bign(int num)
{
*this = num;
}
string bign::toStr() const
{
string res;
res = "";
for (int i = 0; i < len; i++)
res = (char)(s[i] + '0') + res;
if (res == "")
res = "0";
if (!sign&&res != "0")
res = "-" + res;
return res;
}
istream &operator>>(istream &in, bign &num)
{
string str;
in>>str;
num=str;
return in;
}
ostream &operator<<(ostream &out, bign &num)
{
out<<num.toStr();
return out;
}
bign bign::operator=(const char *num)
{
memset(s, 0, sizeof(s));
char a[MAX_L] = "";
if (num[0] != '-')
strcpy(a, num);
else
for (int i = 1; i < strlen(num); i++)
a[i - 1] = num[i];
sign = !(num[0] == '-');
len = strlen(a);
for (int i = 0; i < strlen(a); i++)
s[i] = a[len - i - 1] - 48;
return *this;
}
bign bign::operator=(int num)
{
char temp[MAX_L];
sprintf(temp, "%d", num);
*this = temp;
return *this;
}
bign bign::operator=(const string num)
{
const char *tmp;
tmp = num.c_str();
*this = tmp;
return *this;
}
bool bign::operator<(const bign &num) const
{
if (sign^num.sign)
return num.sign;
if (len != num.len)
return len < num.len;
for (int i = len - 1; i >= 0; i--)
if (s[i] != num.s[i])
return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
return !sign;
}
bool bign::operator>(const bign&num)const
{
return num < *this;
}
bool bign::operator<=(const bign&num)const
{
return !(*this>num);
}
bool bign::operator>=(const bign&num)const
{
return !(*this<num);
}
bool bign::operator!=(const bign&num)const
{
return *this > num || *this < num;
}
bool bign::operator==(const bign&num)const
{
return !(num != *this);
}
bign bign::operator+(const bign &num) const
{
if (sign^num.sign)
{
bign tmp = sign ? num : *this;
tmp.sign = 1;
return sign ? *this - tmp : num - tmp;
}
bign result;
result.len = 0;
int temp = 0;
for (int i = 0; temp || i < (max(len, num.len)); i++)
{
int t = s[i] + num.s[i] + temp;
result.s[result.len++] = t % 10;
temp = t / 10;
}
result.sign = sign;
return result;
}
bign bign::operator++()
{
*this = *this + 1;
return *this;
}
bign bign::operator++(int)
{
bign old = *this;
++(*this);
return old;
}
bign bign::operator+=(const bign &num)
{
*this = *this + num;
return *this;
}
bign bign::operator-(const bign &num) const
{
bign b=num,a=*this;
if (!num.sign && !sign)
{
b.sign=1;
a.sign=1;
return b-a;
}
if (!b.sign)
{
b.sign=1;
return a+b;
}
if (!a.sign)
{
a.sign=1;
b=bign(0)-(a+b);
return b;
}
if (a<b)
{
bign c=(b-a);
c.sign=false;
return c;
}
bign result;
result.len = 0;
for (int i = 0, g = 0; i < a.len; i++)
{
int x = a.s[i] - g;
if (i < b.len) x -= b.s[i];
if (x >= 0) g = 0;
else
{
g = 1;
x += 10;
}
result.s[result.len++] = x;
}
result.clean();
return result;
}
bign bign::operator * (const bign &num)const
{
bign result;
result.len = len + num.len;
for (int i = 0; i < len; i++)
for (int j = 0; j < num.len; j++)
result.s[i + j] += s[i] * num.s[j];
for (int i = 0; i < result.len; i++)
{
result.s[i + 1] += result.s[i] / 10;
result.s[i] %= 10;
}
result.clean();
result.sign = !(sign^num.sign);
return result;
}
bign bign::operator*(const int num)const
{
bign x = num;
bign z = *this;
return x*z;
}
bign bign::operator*=(const bign&num)
{
*this = *this * num;
return *this;
}
bign bign::operator /(const bign&num)const
{
bign ans;
ans.len = len - num.len + 1;
if (ans.len < 0)
{
ans.len = 1;
return ans;
}
bign divisor = *this, divid = num;
divisor.sign = divid.sign = 1;
int k = ans.len - 1;
int j = len - 1;
while (k >= 0)
{
while (divisor.s[j] == 0) j--;
if (k > j) k = j;
char z[MAX_L];
memset(z, 0, sizeof(z));
for (int i = j; i >= k; i--)
z[j - i] = divisor.s[i] + '0';
bign dividend = z;
if (dividend < divid) { k--; continue; }
int key = 0;
while (divid*key <= dividend) key++;
key--;
ans.s[k] = key;
bign temp = divid*key;
for (int i = 0; i < k; i++)
temp = temp * 10;
divisor = divisor - temp;
k--;
}
ans.clean();
ans.sign = !(sign^num.sign);
return ans;
}
bign bign::operator/=(const bign&num)
{
*this = *this / num;
return *this;
}
bign bign::operator%(const bign& num)const
{
bign a = *this, b = num;
a.sign = b.sign = 1;
bign result, temp = a / b*b;
result = a - temp;
result.sign = sign;
return result;
}
bign bign::pow(const bign& num)const
{
bign result = 1;
for (bign i = 0; i < num; i++)
result = result*(*this);
return result;
}
bign bign::factorial()const
{
bign result = 1;
for (bign i = 1; i <= *this; i++)
result *= i;
return result;
}
void bign::clean()
{
if (len == 0) len++;
while (len > 1 && s[len - 1] == '\0')
len--;
}
bign bign::Sqrt()const
{
if(*this<0)return -1;
if(*this<=1)return *this;
bign l=0,r=*this,mid;
while(r-l>1)
{
mid=(l+r)/2;
if(mid*mid>*this)
r=mid;
else
l=mid;
}
return l;
}
bign::~bign()
{
}
bign num[105];
/*
公式:
f[i] = 3*f[i-1]-f[i-2]+2;
*/
int main() {
num[1] = 1, num[2] = 5;
int n;
cin>>n;
for(int i=3; i<=n; i++){
num[i] = num[i-1]*3-num[i-2]+2;
}
cout << num[n] << endl;
return 0;
}

int128的读入

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool scan_d(T & ret)
{
char c;
int sgn;
if(c = getchar(), c == EOF)return false;
while(c != '-' && (c < '0' || c > '9'))c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while(c = getchar(), c >= '0' && c <= '9')
ret = ret * 10 + (c - '0');
ret *= sgn;
return true;
}
#ifdef Cpp11
template <class T, class ... Args>
inline bool scan_d(T & ret, Args & ... args)
{
scan_d(ret);
scan_d(args...);
}
#define cin.tie(0); cin.tie(nullptr);
#define cout.tie(0); cout.tie(nullptr);
#endif
inline bool scan_ch(char &ch)
{
if(ch = getchar(), ch == EOF)return false;
while(ch == ' ' || ch == '\n')ch = getchar();
return true;
}
template <class T>
inline void out_number(T x)
{
if(x < 0)
{
putchar('-');
out_number(- x);
return ;
}
if(x > 9)out_number(x / 10);
putchar(x % 10 + '0');
}
int main()
{
__int128 a, b;
scan_d(a), scan_d(b);
out_number(a + b);
puts("");
return 0;
}

python 读入

1
2
3
4
5
6
7
8
9
10
import math
if __name__ == '__main__':
try:
while True:
a, b, c = map(int, input().split())
print(pow(a, int(pow(b, c, int(1e9 + 6))), int(1e9 + 7)))
except EOFError:
pass

读取带有空格的字符串

1
2
3
4
5
6
7
//method 1
string str;
getline(cin, str);
//method 2
char str[maxn];
gets(str);

adptive Simpson’s rule

为什么求sin(x)/x就会挂掉啊不知道MATLAB能不能求出来这种形式的积分,明天试试。
还有三重积分球体积怎么用数值分析的方法来求?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <bits/stdc++.h>
using namespace std;
const double PI = acos(-1.0);
double F(double x){
return sin(x);
}
double simpson(double a, double b){
double c = a+(b-a)/2;
return (F(a)+4*F(c)+F(b))*(b-a)/6;
}
double asr(double a, double b, double eps, double A){
double c = a+(b-a)/2;
double L = simpson(a, c), R = simpson(c, b);
if(fabs(L+R-A) <= 15*eps) return L+R+(L+R-A)/15.0;
return asr(a, c, eps/2, L)+asr(c, b, eps/2, R);
}
double asr(double a, double b, double eps){
return asr(a, b, eps, simpson(a, b));
}
int main()
{
double s = asr(0, PI, 1e-5);
cout<<s<<endl;
return 0;
}

二分图匹配

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <bits/stdc++.h>
using namespace std;
const int maxn = 505;
vector<int> G[maxn*2];
int match[maxn*2];
int used[maxn*2];
int n, m, l;
void add_edge(int u, int v)
{
G[u].push_back(v);
G[v].push_back(u);
}
bool dfs(int v){
used[v] = true;
for(int i=0; i<G[v].size(); i++){
int u = G[v][i], w = match[u];
if(w == -1 || !used[w]&&dfs(w)){
match[u] = v;
match[v] = u;
return true;
}
}
return false;
}
void solve(){
int ans = 0;
memset(match, -1, sizeof(match));
for(int v=0; v<=n; v++){
if(match[v] == -1){
memset(used, 0, sizeof(used));
if(dfs(v)) ans++;
}
}
for(int v=500; v<=m+500; v++){
if(match[v] == -1){
memset(used, 0, sizeof(used));
if(dfs(v)) ans++;
}
}
printf("%d\n", ans);
}
int main()
{
while(~scanf("%d%d", &n, &m)){
for(int i=0 ;i<maxn*2; i++) G[i].clear();
scanf("%d", &l);
for(int i=1; i<=l; i++){
int u, v;
scanf("%d%d", &u, &v);
add_edge(u, v+500);
}
solve();
//cout<<match[1]<<" "<<match[2]<<" "<<match[501]<<" "<<match[502]<<endl;
}
return 0;
}

Dinic算法求最大流

接口
n:节点的个数
m:边的个数
s:起始点(源点)
t:终点(汇点)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int maxn = 205;
const int INF = 1e9+10;
struct Edge{
int to, cap, rev;
};
vector<Edge> G[maxn];
int cnt[maxn];
int level[maxn];
int s, t;
int n, m;
void add_edge(int u, int v, int cap){
G[u].push_back(Edge{v, cap, G[v].size()});
G[v].push_back(Edge{u, 0, G[u].size()-1});
}
void bfs(int s){
memset(level, -1, sizeof(level));
queue<int> q;
q.push(s);
level[s] = 0;
while(!q.empty()){
int v = q.front();
q.pop();
for(int i=0; i<G[v].size(); i++){
Edge& e = G[v][i];
if(e.cap>0&&level[e.to]<0){
level[e.to] = level[v]+1;
q.push(e.to);
}
}
}
}
int dfs(int v, int t, int flow){
if(v == t) return flow;
for(int& i=cnt[v]; i<G[v].size(); i++){
Edge& e = G[v][i];
if(e.cap>0&&level[v]<level[e.to]){
int d = dfs(e.to, t, min(flow, e.cap));
if(d>0){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;//一旦有一条路径满足就立即返回!
}
}
}
return 0;
}
int max_flow(int s, int t){
int flow = 0;
for(;;){
//构造层次图
bfs(s);
//无法连通终点,结束访问
if(level[t]<0) return flow;
int f;
//cnt数组记录在递归的过程中的边的顺序。
memset(cnt, 0, sizeof(cnt));
//当存在增广路的时候不断的进行增广
while((f = dfs(s, t, INF))>0){
flow+=f;
}
}
}
int main()
{
while(~scanf("%d%d", &n, &m)){
for(int i=0; i<=n; i++) G[i].clear();
int u, v, cap;
for(int i=0; i<m; i++){
scanf("%d %d %d", &u, &v, &cap);
add_edge(u, v, cap);
}
s = 1;
t = n;
printf("%d\n", max_flow(s, t));
}
return 0;
}

最小费用流最新模板

费用是float类型的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <queue>
#include <cmath>
#include <iostream>
#define double float
using namespace std;
const int maxn = 200+10;
namespace mincostflow {
const int INF=0x3f3f3f3f;
struct node {
int to; int cap;
double cost; int rev;
node(int t=0,int c=0,double _c=0,int n=0):
to(t),cap(c),cost(_c),rev(n) {};
}; vector<node> edge[maxn];
void addedge(int from,int to,int cap,double cost) {
edge[from].push_back(node(to,cap,cost,edge[to].size()));
edge[to].push_back(node(from,0,-cost,edge[from].size()-1));
}
double dis[maxn];
bool mark[maxn];
void spfa(int s,int t,int n) {
for(int i=0; i<=n+2; i++) dis[i] = double (INF);
memset(mark+1,0,n*sizeof(bool));
static int Q[maxn],ST,ED;
dis[s]=0; ST=ED=0; Q[ED++]=s;
while (ST!=ED) {
int v=Q[ST]; mark[v]=0;
if ((++ST)==maxn) ST=0;
for (node &e:edge[v]) {
if (e.cap>0&&dis[e.to]>dis[v]+e.cost) {
dis[e.to]=dis[v]+e.cost;
if (!mark[e.to]) {
if (ST==ED||dis[Q[ST]]<=dis[e.to]) {
Q[ED]=e.to,mark[e.to]=1;
if ((++ED)==maxn) ED=0;
} else {
if ((--ST)<0) ST+=maxn;
Q[ST]=e.to,mark[e.to]=1;
}
}
}
}
}
} int cur[maxn];
int dfs(int x,int t,int flow) {
if (x==t||!flow) return flow;
int ret=0; mark[x]=1;
for (int &i=cur[x];i<(int)edge[x].size();i++) {
node &e=edge[x][i];
if (!mark[e.to]&&e.cap) {
if (dis[x]+e.cost==dis[e.to]) {
int f=dfs(e.to,t,min(flow,e.cap));
e.cap-=f; edge[e.to][e.rev].cap+=f;
ret+=f; flow-=f;
if (flow==0) break;
}
}
} mark[x]=0;
return ret;
}
pair<int,double> min_costflow(int s,int t,int n) {
int ret=0;
double ans=0;
int flow = INF;
while (flow) {
spfa(s,t,n); if (dis[t]==double(INF)) break;
memset(cur+1,0,n*sizeof(int));
double len=dis[t];
int f;
while ((f=dfs(s,t,flow))>0)
ret+=f,ans+=len*f,flow-=f;
} return make_pair(ret,ans);//最大流,最小费用
}
void init(int n) {
int i; for (int i = 1; i <= n; i++) edge[i].clear();
}
}
int n, m;
using namespace mincostflow;
int ss, tt;
double e = 2.718281828459045;
int main(int argc, char const *argv[])
{
int _;
scanf("%d", &_);
while(_--){
scanf("%d %d", &n, &m);//n个点,m条边
init(n+2);//点的个数
int x, y, z;
double s;
ss=1, tt = n+2;
for(int i=1; i<=n; i++) {
scanf("%d%d", &x, &y);
if(x) addedge(ss, i + 1, x, 0);
if(y) addedge(i + 1, tt, y, 0);
}
for (int i = 1; i <= m; i++) {//建边
scanf("%d %d %d %f", &x, &y, &z, &s);
if(z)addedge(x + 1, y + 1, z-1, -log(1.0 - s)), addedge(x + 1, y + 1, 1, 0.0);
}
pair<int,double > ans = min_costflow(ss, tt, n+2);//s,t,点的个数
printf("%.2f\n", 1.0-pow(e, -ans.second));//最大流,最小费用
}
return 0;
}

链式前向星来存图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include <bits/stdc++.h>
using namespace std;
const int maxn = 4e5+100;
struct node{
int to, next, weight;
}edge[maxn];
int cnt;
int head[maxn];
int n;
void add(int u, int v, int weight)
{
edge[cnt].to = v;
edge[cnt].weight = weight;
edge[cnt].next = head[u];
head[u] = cnt++;
}
int main()
{
while(cin>>n){
cnt=0, memset(head, -1, sizeof(head));
for(int i=0; i<n-1; i++){
int u, v, weight;
cin>>u>>v>>weight;
add(u, v, weight);
add(v, u, weight);
}
for(int i=1; i<=n; i++){
for(int j=head[i]; j!=-1; j = edge[j].next){
cout<<edge[j].to<<" ";
}
cout<<endl;
}
}
return 0;
}

快速幂

快速幂

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <cstdio>
using namespace std;
typedef long long ll;
ll a, b, c;
ll pow_mod(ll a, ll b, ll mod){
ll ans = 1;
while(b){
if(b&1){
ans = ans*a%mod;
}
a = a*a%mod;
b>>=1;
}
return ans;
}
int main(){
while(~scanf("%I64d%I64d%I64d", &a, &b, &c)){
printf("%I64d\n", pow_mod(a, b, c));
}
return 0;
}

矩阵快速幂

斐波那契数列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn = 2;
const int mod = 7;
int A, B, n;
struct Mat{
int mat[maxn][maxn];
Mat(){
memset(mat, 0, sizeof(mat));
}
};
Mat mul(Mat a, Mat b, int n){
Mat ans;
for(int i=0; i<n; i++){
for(int k=0; k<n; k++){
for(int j=0; j<n; j++){
ans.mat[i][j] = (ans.mat[i][j]+a.mat[i][k]*b.mat[k][j])%mod;
}
}
}
return ans;
}
Mat pow_mat(Mat a, int b, int n){
Mat ans;
for(int i=0; i<n; i++)ans.mat[i][i] = 1;
while(b){
if(b&1){
ans = mul(a, ans, n);
}
a = mul(a, a, n);
b>>=1;
}
return ans;
}
int main(){
while(~scanf("%d%d%d", &A, &B, &n)&&A+B+n!=0){
Mat a;
a.mat[0][0] = A, a.mat[0][1] = B, a.mat[1][0] = 1, a.mat[1][1] = 0;
if(n <= 2){
printf("%d\n", 1);
}
else{
Mat ans = pow_mat(a, n-2, 2);
int temp = (ans.mat[0][0]+ans.mat[0][1])%mod;
printf("%d\n", temp);
}
}
return 0;
}

求逆元

拓展欧几里德求解逆元

用拓展欧几里德来求解逆元的时候,需要\(gcd(b, mod)=1\)。
拓展欧几里德的模板题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 9973;
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){ d=a; x=1; y=0;}
else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }
}
ll inverse(ll a,ll n){
ll d,x,y;
extgcd(a,n,d,x,y);
return d==1?(x+n)%n:-1;
}
int T;
int n, b;
int main()
{
scanf("%d", &T);
for(int i=0; i<T; i++){
scanf("%d%d", &n, &b);
ll inver = inverse(b, mod);
int ans = inver*n%mod;
printf("%d\n", ans);
}
return 0;
}

费马小定理求解逆元

若被摸的数p为素数的时候,有拓展费马小定理证明:
\(a^{p-1}\equiv 1mod p\)

那么a的逆元就为\(a^{p-2}\).
快速幂搞一下就行了

一般的求解。


一般求解方法:

但是p*b的值往往是比较的大的,有时候会溢出就不知道怎么弄了。(看后面的有关的一道数论的题目)

c++中一些优秀的函数

strstr

可以部分的取代kmp算法,但是不能统计子串的个数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <bits/stdc++.h>
using namespace std;
//在串中查找模式串第一次出现的位置。
const int maxn = 1e3+10;
char pattern[maxn];
char text[maxn<<4];
int main()
{
char *ptr;
while(~scanf("%s%s", pattern, text)){
ptr = strstr(text, pattern);
int len = strlen(pattern);
if(ptr != NULL){
char ans[maxn];
for(int i=0; i<len; i++){
ans[i] = ptr[i];
}
ans[len] = '\0';
printf("%s\n", ans);
}
else{
printf("-1\n");
}
}
return 0;
}

unique

使用unique之前要先对数组进行相应的排序,然后求得不同数字的个数。
unique不改变原来数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <bits/stdc++.h>
using namespace std;
int main(){
int num[20];
for(int i=0; i<10; i++){
num[i] = i+1;
}
for(int i=10; i<20; i++){
num[i] = i-9;
}
sort(num, num+20);
int sz = unique(num, num+20)-num;
cout<<sz<<endl;
return 0;
}

lower_bound()

返回第一个大于等于这个值的下标(下标是从0开始的)

1
2
int num[10] = {1, 2, 3, 4, 5, 5, 6, 7, 8, 9};
printf("%d\n", lower_bound(num, num+10, 5)-num);

upper_bound()

返回第一个大于这个值的下标

1
2
int num[10] = {1, 2, 3, 4, 5, 5, 6, 7, 8, 9};
printf("%d\n", upper_bound(num, num+10, 5)-num);

make_heap&&distance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
int n;
int num[maxn];
vector<int> heap;
int main()
{
scanf("%d", &n);
for(int i=0; i<n; i++){
scanf("%d", &num[i]);
heap.push_back(num[i]);
}
make_heap(heap.begin(), heap.end(), greater<int>() );
for(vector<int>::iterator it = heap.begin(); it!=heap.end(); it++){
printf("%d ", *it);
}
printf("\n");
return 0;
}
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3+10;
vector<int> num;
int dis(int number){
return distance(num.begin(), find(num.begin(), num.end(), number));
}
int main(){
int n;
for(int i=1; i<=10; i++){
num.push_back(i);
}
cout<<dis(5)<<endl;
}

bitset

bitset的各种操作
高中OIer真的是惹不起,太强了。初中就已经到达了我现在的水平,真的是好惭愧啊。
bitset的长度在刚开始的时候就已经定义好了

1
bitset<20> test;

priority_queue

符号重载后面加const的原因
简单来说在这个函数里面不能修改任何的数据,否则就会报错,降低错误率。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include <bits/stdc++.h>
using namespace std;
struct Node{
string name;
int top;
friend bool operator < (Node a, Node b){
return a.top>b.top;
}
};
priority_queue<Node> pq;
struct cmp{
bool operator () (Node a, Node b){
if(a.top!=b.top) return a.top>b.top;
}
};
priority_queue<Node, vector<Node>, cmp> pq2;
int main(){
pq2.push(Node{"tian", 2});
pq2.push(Node{"bao", 1});
pq2.push(Node{"lin", 3});
Node temp = pq2.top();
cout<<temp.name<<" "<<temp.top<<endl;
return 0;
}

树状数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3+10;
int lowbit(int x){
return x&-x;
}
int num[maxn];
int c[maxn];
int n;
void update(int x, int val){
while(x<=n){
c[x] += val;
x += lowbit(x);
}
}
int sum(int x){
int ans = 0;
while(x>0){
ans += c[x];
x -= lowbit(x);
}
return ans;
}
int main(){
while(~scanf("%d", &n)){
for(int i=1; i<=n; i++){
scanf("%d", &num[i]);
}
for(int i=1; i<=n; i++){
update(i, num[i]);
}
for(int i=1; i<=n; i++){
printf("%d: %d\n", i, sum(i));
}
}
return 0;
}

分治求逆序对的个数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
ll merge_count(vector<int> &a){
int n = a.size();
if(n<=1) return 0;
ll cnt = 0;
vector<int> b(a.begin(), a.begin()+n/2);
vector<int> c(a.begin()+n/2, a.end());
cnt += merge_count(b);
cnt += merge_count(c);
int ai = 0, bi = 0, ci=0;
while(ai<n){
if(bi<b.size()&&(ci == c.size()||b[bi]<=c[ci])){
a[ai++] = b[bi++];
}
else{
cnt += n/2-bi;
a[ai++] = c[ci++];
}
}
return cnt;
}

KMP算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3+10;
int nexT[maxn];
char text[maxn];
char pattern[maxn];
int len1, len2;
void get_next(){
nexT[0] = -1;
int j = -1;
for(int i=1; i<len2; i++){
while(j!=-1&&pattern[i]!=pattern[j+1]){
j = nexT[j];
}
if(pattern[i] == pattern[j+1]){
j++;
}
nexT[i] = j;
}
}
int KMP(){
get_next();
int j=-1;
int ans = 0;
for(int i=0; i<len1; i++){
while(j!=-1&&text[i]!=pattern[j+1]){
j = nexT[j];
}
if(text[i] == pattern[j+1]){
j++;
}
if(j == len2-1){
ans++;
j = nexT[j];
}
}
return ans;
}
int main()
{
while(~scanf("%s%s", text, pattern)){
len1 = strlen(text);
len2 = strlen(pattern);
printf("%d\n", KMP());
}
return 0;
}

二分图的染色问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3+10;
int color[maxn];
vector<int> G[maxn];
int n, m;
bool bipartite(int u){
for(int i=0; i<G[u].size(); i++){
int v = G[u][i];
if(color[v]&&color[v] == color[u]) return false;
if(!color[v]){
color[v] = 3 - color[u];
if(!bipartite(v)) return false;
}
}
return true;
}
int main()
{
while(~scanf("%d%d", &n, &m)){
for(int i=0; i<n; i++) G[i].clear();
memset(color, 0, sizeof(color));
int u, v;
for(int i=0; i<m; i++){
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
if(bipartite(0)){
printf("YES\n");
}
else{
printf("NO\n");
}
}
return 0;
}

割顶

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3+10;
int n, m;
vector<int> G[maxn];
int dfs_clock;
int pre[maxn], low[maxn];
bool iscut[maxn];
/*
5 5
0 1
1 2
1 3
2 4
4 0
*/
int dfs(int u, int fa){
int lowu = pre[u] = ++dfs_clock;
int child = 0;
for(int i=0; i<G[u].size(); i++){
int v = G[u][i];
if(!pre[v]){
child++;
int lowv = dfs(v, u);
lowu = min(lowv, lowu);
if(lowv>=pre[u]){
iscut[u] = true;
}
}
else if(pre[u]>pre[v]&&fa!=v){
lowu = min(lowu, pre[v]);
}
}
if(fa<0 &&child == 1) iscut[u] = false;
low[u] = lowu;
return lowu;
}
int main()
{
while(~scanf("%d%d", &n, &m)){
for(int i=0; i<n; i++) G[i].clear();
memset(iscut, 0, sizeof(iscut));
memset(pre, 0, sizeof(pre));
int u, v;
for(int i=0; i<m; i++){
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=0; i<n; i++){
if(!pre[i]) dfs(i, -1);
}
for(int i=0; i<n; i++){
printf("%d ", iscut[i]);
}
printf("\n");
}
return 0;
}

树的三序

还差一个层序遍历

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3+10;
/*
7
4 1 3 2 6 5 7
1 2 3 4 5 6 7
*/
//post order
/*
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
*/
int pre[maxn];
int in[maxn];
int post[maxn];
int n;
struct Node{
int data;
Node* lchild;
Node* rchild;
Node(){
this->data = -1;
this->lchild = this->rchild = NULL;
}
};
Node* build_post(int prel, int prer, int inl, int inr){
if(prer<prel) return NULL;
Node* root = new Node;
root->data = pre[prel];
int temp = pre[prel];
int k;
for(k=inl; k<=inr; k++){
if(temp == in[k]) break;
}
int numleft = k-inl;
root->lchild = build_post(prel+1, prel+numleft, inl, k-1);
root->rchild = build_post(prel+numleft+1, prer, k+1, inr);
return root;
}
Node* build_pre(int postl, int postr, int inl, int inr){
if(postr<postl) return NULL;
Node* root = new Node;
root->data = post[postr];
int temp = pre[postr];
int k;
for(k=inl; k<=inr; k++){
if(temp == in[k]) break;
}
int numleft = k-inl;
root->lchild = build_pre(postl, postl+numleft-1, inl, k-1);
root->rchild = build_pre(postl+numleft, postr-1, k+1, inr);
return root;
}
void post_order(Node* root){
if(root == NULL) return;
post_order(root->lchild);
post_order(root->rchild);
printf("%d", root->data);
}
void pre_order(Node* root){
if(root == NULL) return;
printf("%d", root->data);
pre_order(root->lchild);
pre_order(root->rchild);
}
void layer_order(Node *root){
queue<Node*> q;
q.push(root);
while(!q.empty()){
Node *temp = q.front();
q.pop();
printf("%d ", temp->data);
if(temp->lchild != NULL)
q.push(temp->lchild);
if(temp->rchild != NULL)
q.push(temp->rchild);
}
}
int main()
{
int type;
printf("请输入个数n以及所得到的序列:\n1.先序和中序\n2.中序和后序\n");
while(~scanf("%d", &type)){
printf("请输入数组的大小\n");
scanf("%d", &n);
if(type == 1){
for(int i=0; i<n; i++) scanf("%d", &pre[i]);
for(int i=0; i<n; i++) scanf("%d", &in[i]);
Node* root = build_post(0, n-1, 0, n-1);
post_order(root);
printf("\n");
}
else if(type == 2){
for(int i=0; i<n; i++) scanf("%d", &post[i]);
for(int i=0; i<n; i++) scanf("%d", &in[i]);
Node* root = build_pre(0, n-1, 0, n-1);
printf("444\n");
pre_order(root);
printf("\n");
}
else{
printf("你是不是想捣乱!\n");
break;
}
}
return 0;
}

逆元

要求\(a\lt n\), 并且gcd(a, n) == 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
typedef long long ll;
ll ex_gcd(ll a, ll b, ll &x, ll &y){
if(a==0 && b==0) return -1;
if(b == 0){
x=1, y=0;
return a;
}
ll d = ex_gcd(b, a%b, y, x);
y -= a/b*x;//这里是整除
return d;
}
ll inv(ll a, ll n){
ll x, y;
ll d = ex_gcd(a, n, x, y);
if(d == 1) return (x%n+n)%n;
else return -1;
}

求组合数

1
2
3
4
5
6
7
8
typedef long long ll;
const int maxn = 67;
ll res[maxn][maxn];
ll Comb(ll n, ll m){
if(m == 0|| n == m) return 1;
if(res[n][m]!=0) return res[n][m];
return res[n][m] = C(n-1, m-1)+C(n-1, m);
}

Lucas定理

p要求为素数,p<=1e5, n, m<=1e18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
int n, m, p;
typedef long long ll;
ll ex_gcd(ll a, ll b, ll &x, ll &y){
if(a == 0&&b == 0) return -1;
if(b ==0){
x=1, y=0;
return a;
}
ll d=ecx_gcd(b, a%b, y, x);
y -= a/b*x;
return d;
}
ll inv(ll a, ll n){
ll x, y;
ll d = ex_gcd(a, n, x, y);
if(d!=1) return -1;
else return (x%n+n)%n;
}
//O(mlogm)
int C(int n, int m){
int ans = 1;
for(int i=1; i<=m; i++){
ans = ans*(n-m+i)%p;
ans = ans*inv(i, p)%p;
}
return ans;
}
int lucas(int n, int m){
if(m == 0) return 1;
return C(n%p, m%p)*lucas(n/p, m/p)%p;
}

p不为质数的组合数求解

先将分子分母进行相应的质因子分解,然后消去分母,最后进行快速幂。

4C默写

搞完就删

堆排序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3+10;
int heap[maxn];
int n;
/*
10
85 55 82 57 68 92 99 98 66 56
99 98 92 66 68 85 82 57 55 56
*/
void downAdjust(int low, int high){
int i=low, j=2*i;
while(j<=high){
if(j+1<=high&&heap[j+1]>heap[j]){
j++;
}
if(heap[j]>heap[i]){
swap(heap[i], heap[j]);
i = j;
j = i*2;
}
else break;
}
}
void creat_heap(){
for(int i=n/2; i>=1; i--){
downAdjust(i, n);
}
}
void deletetop(){
heap[1] = heap[n--];
downAdjust(1, n);
}
void upAdjust(int low, int high){
int i=high, j=i/2;
while(j>=low){
if(heap[j]<heap[i]){
swap(heap[i], heap[j]);
i = j;
j = i/2;
}
else break;
}
}
void insert_heap(int x){
heap[++n] = x;
upAdjust(1, n);
}
void heapsort(){
creat_heap();
for(int i=n; i>=1; i--){
swap(heap[i], heap[1]);
downAdjust(1, i-1);
}
}
int main()
{
scanf("%d", &n);
for(int i=1; i<=n; i++){
scanf("%d", &heap[i]);
}
creat_heap();
for(int i=1; i<=n; i++){
printf("%d ", heap[i]);
}
heapsort();
for(int i=1; i<=n; i++){
printf("%d ", heap[i]);
}
return 0;
}

树的层序遍历

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <bits/stdc++.h>
using namespace std;
/*
4
1 6
3 5 7
2
*/
const int maxn = 1e3+10;
struct Node{
int data;
Node *lchild, *rchild;
Node(){
this->data = -1;
this->lchild = this->rchild = NULL;
}
};
int pre[maxn];
int in[maxn];
Node* build(int prel, int prer, int inl, int inr){
if(prel>prer) return NULL;
Node *root = new Node;
root->data = pre[prel];
int k;
for(k=inl; k<=inr; k++){
if(pre[prel] == in[k]) break;
}
int num = k-inl;
root->lchild = build(prel+1, prel+num, inl, k-1);
root->rchild = build(prel+num+1, prer, k+1, inr);
return root;
}
void post_order(Node *root){
if(root == NULL) return;
post_order(root->lchild);
post_order(root->rchild);
printf("%d ", root->data);
}
void layer_order(Node *root){
queue<Node*> q;
q.push(root);
while(!q.empty()){
Node *temp = q.front();
q.pop();
printf("%d ", temp->data);
if(temp->lchild != NULL)
q.push(temp->lchild);
if(temp->rchild != NULL)
q.push(temp->rchild);
}
}
int n;
int main(){
scanf("%d", &n);
for(int i=0; i<n; i++) scanf("%d", &pre[i]);
for(int i=0; i<n; i++) scanf("%d", &in[i]);
Node *root = build(0, n-1, 0, n-1);
post_order(root);
printf("\n");
layer_order(root);
return 0;
}

最长回文串

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3+10;
string str;
int dp[maxn][maxn];
int main()
{
getline(cin, str);
memset(dp, 0, sizeof(dp));
int len = str.length();
int ans = 1;
for(int i=0; i<len; i++){
dp[i][i] = 1;
if(i+1<len){
if(str[i] == str[i+1]){
dp[i][i+1]=1;
ans = 2;
}
}
}
for(int l=3; l<=len; l++){
for(int i=0; i+l-1<len; i++){
int j = i+l-1;
if(str[i] == str[j] &&dp[i+1][j-1]){
dp[i][j] = 1;
ans = l;
}
}
}
printf("%d\n", ans);
}

scc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
/*
12 16
12 11
11 8
11 10
8 10
10 9
9 8
9 7
7 6
6 5
5 7
6 3
6 4
4 3
3 2
2 3
4 1
*/
using namespace std;
const int maxn = 1e3+10;
vector<int> G[maxn];
vector<int> rG[maxn];
bool vis[maxn];
int index[maxn];
vector<int> vs;
void add_edge(int u, int v){
G[u].push_back(v);
rG[v].push_back(u);
}
int n, m;
void dfs(int u){
vis[u] = true;
for(int i=0; i<G[u].size(); i++){
if(!vis[G[u][i]]) dfs(G[u][i]);
}
vs.push_back(u);
}
void rdfs(int v, int k){
vis[v] = true;
index[v] = k;
for(int i=0; i<rG[v].size(); i++){
if(!vis[rG[v][i]])rdfs(rG[v][i], k);
}
}
int scc(){
memset(vis, 0, sizeof(vis));
vs.clear();
for(int i=0; i<n; i++){
if(!vis[i]) dfs(i);
}
memset(vis, 0, sizeof(vis));
int k = 0;
for(int i=vs.size()-1; i>=0; i--){
if(!vis[vs[i]]){
rdfs(vs[i], k++);
}
}
printf("%d\n", k);
return k;
}
int main()
{
while(~scanf("%d%d", &n, &m)){
for(int i=0; i<n; i++){
G[i].clear();
rG[i].clear();
}
int u, v;
for(int i=0; i<m; i++){
scanf("%d%d", &u, &v);
add_edge(u-1, v-1);
}
scc();
for(int i=0; i<n; i++){
printf("%d: %d\n", i, index[i]);
}
}
return 0;
}

最长上升子序列

感觉运用了贪心的细想,不断的更新最长的子序列。
用二分查找的方法找到一个位置,使得\(num\gt b[i-1] 并且num\lt b[i],并用num代替b[i]\)
注意二分的总结

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5+10;
int a[maxn], b[maxn];
int n;
int len;
/*
5
7 2 3 1 4 8
*/
int bi(int num){
int L=1, R=len;
//用二分查找的方法找到一个位置,使得num>b[i-1] 并且num<b[i],并用num代替b[i]
while(L<=R){
int M = (L+R)/2;
if(num>=b[M]) L = M-1;
else R = M-1;
}
printf("len: %d\n", L);
return L;
}
int main()
{
while(~scanf("%d", &n)){
for(int i=1; i<=n; i++) scanf("%d", &a[i]);
len=1;
b[1] = a[1];
for(int i=2; i<=n; i++){
if(a[i]>=b[len]){
b[++len] = a[i];
}
else{
int pos = bi(a[i]);
b[pos] = a[i];
}
}
printf("%d\n", len);
for(int i=1; i<=len; i++){
printf("%d ", b[i]);
}
printf("\n");
}
return 0;
}

文章目录
  1. 1. FAQ
  2. 2. 快速读入挂
  3. 3. c++高精度
  4. 4. int128的读入
  5. 5. python 读入
  6. 6. 读取带有空格的字符串
  7. 7. adptive Simpson’s rule
  8. 8. 二分图匹配
  9. 9. Dinic算法求最大流
  10. 10. 最小费用流最新模板
  11. 11. 链式前向星来存图
  12. 12. 快速幂
    1. 12.1. 快速幂
    2. 12.2. 矩阵快速幂
  13. 13. 求逆元
    1. 13.1. 拓展欧几里德求解逆元
    2. 13.2. 费马小定理求解逆元
    3. 13.3. 一般的求解。
  14. 14. c++中一些优秀的函数
    1. 14.1. strstr
    2. 14.2. unique
    3. 14.3. lower_bound()
    4. 14.4. upper_bound()
    5. 14.5. make_heap&&distance
    6. 14.6. bitset
    7. 14.7. priority_queue
  15. 15. 树状数组
  16. 16. 分治求逆序对的个数
  17. 17. KMP算法
  18. 18. 二分图的染色问题
  19. 19. 割顶
  20. 20. 树的三序
  21. 21. 逆元
  22. 22. 求组合数
  23. 23. Lucas定理
  24. 24. p不为质数的组合数求解
  25. 25. 4C默写
    1. 25.1. 堆排序
    2. 25.2. 树的层序遍历
    3. 25.3. 最长回文串
    4. 25.4. scc
  26. 26. 最长上升子序列
{{ live2d() }}