凸包

基本的思想会,但是实现的小细节还不知道,先mark

蓝书的P275
先求凸包(扫描的时间为O(n),排序的时间为O(nlogn)),然后求最远点对(O(n))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// LA4728/UVa1453 Square
// Rujia Liu
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
struct Point {
int x, y;
Point(int x=0, int y=0):x(x),y(y) { }
};
typedef Point Vector;
Vector operator - (const Point& A, const Point& B) {
return Vector(A.x-B.x, A.y-B.y);
}
int Cross(const Vector& A, const Vector& B) {
return A.x*B.y - A.y*B.x;
}
int Dot(const Vector& A, const Vector& B) {
return A.x*B.x + A.y*B.y;
}
int Dist2(const Point& A, const Point& B) {
return (A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y);
}
bool operator < (const Point& p1, const Point& p2) {
return p1.x < p2.x || (p1.x == p2.x && p1.y < p2.y);
}
bool operator == (const Point& p1, const Point& p2) {
return p1.x == p2.x && p1.y == p2.y;
}
// 点集凸包
// 如果不希望在凸包的边上有输入点,把两个 <= 改成 <
// 注意:输入点集会被修改
vector<Point> ConvexHull(vector<Point>& p) {
// 预处理,删除重复点
sort(p.begin(), p.end());
p.erase(unique(p.begin(), p.end()), p.end());
int n = p.size();
int m = 0;
vector<Point> ch(n+1);
for(int i = 0; i < n; i++) {
while(m > 1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--;
ch[m++] = p[i];
}
int k = m;
for(int i = n-2; i >= 0; i--) {
while(m > k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--;
ch[m++] = p[i];
}
if(n > 1) m--;
ch.resize(m);
return ch;
}
// 返回点集直径的平方
int diameter2(vector<Point>& points) {
vector<Point> p = ConvexHull(points);
int n = p.size();
if(n == 1) return 0;
if(n == 2) return Dist2(p[0], p[1]);
p.push_back(p[0]); // 免得取模
int ans = 0;
for(int u = 0, v = 1; u < n; u++) {
// 一条直线贴住边p[u]-p[u+1]
for(;;) {
// 当Area(p[u], p[u+1], p[v+1]) <= Area(p[u], p[u+1], p[v])时停止旋转
// 即Cross(p[u+1]-p[u], p[v+1]-p[u]) - Cross(p[u+1]-p[u], p[v]-p[u]) <= 0
// 根据Cross(A,B) - Cross(A,C) = Cross(A,B-C)
// 化简得Cross(p[u+1]-p[u], p[v+1]-p[v]) <= 0
int diff = Cross(p[u+1]-p[u], p[v+1]-p[v]);
if(diff <= 0) {
ans = max(ans, Dist2(p[u], p[v])); // u和v是对踵点
if(diff == 0) ans = max(ans, Dist2(p[u], p[v+1])); // diff == 0时u和v+1也是对踵点
break;
}
v = (v + 1) % n;
}
}
return ans;
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
vector<Point> points;
for(int i = 0; i < n; i++) {
int x, y, w;
scanf("%d%d%d", &x, &y, &w);
points.push_back(Point(x, y));
points.push_back(Point(x+w, y));
points.push_back(Point(x, y+w));
points.push_back(Point(x+w, y+w));
}
printf("%d\n", diameter2(points));
}
return 0;
}

未解决的问题

文章目录
  1. 1. 未解决的问题
{{ live2d() }}